
  Volume 8: Issue 1; pp 14-17 

        Review Article (2019) 

a. Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, 45221 

From Euclidean Spaces to Metric Spaces 
 

Ryan Rogersa, Ning Zhonga 

 

 
In this note, we provide the definition of a metric space and establish that, while all Euclidean spaces are metric spaces, not all 

metric spaces are Euclidean spaces. It is then natural and interesting to ask which theorems that hold in Euclidean spaces can be 

extended to general metric spaces and which ones cannot be extended. We survey this topic by considering six well-known 

theorems which hold in Euclidean spaces and rigorously exploring their validities in general metric spaces. 
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Definition: Let M be a set. A metric on M is a function d: 

𝑀 × 𝑀 → ℝ such that for all 𝑝, 𝑞, 𝑟 ∈ 𝑀, the following 

properties hold: 

1. d(𝑝, 𝑞) ≥ 0; 

2. d(𝑝, 𝑞) = d(𝑞, 𝑝); 

3. d(𝑝, 𝑞) = 0 if and only if 𝑝 = 𝑞; 

4. d(𝑝, 𝑟) ≤ d(𝑝, 𝑞) + d(𝑞, 𝑟). 

The pair (M, d) is called a metric space. 

We may deduce from this definition that each 𝑛-

dimensional Euclidean space ℝ𝑛, where 𝑛 is a positive integer, 

is a metric space when we define d as the known distance 

function (namely, for any points 𝑥 = (𝑥1, …, 𝑥𝑛) and 𝑦 =  (𝑦1, 

…, 𝑦𝑛) in ℝ𝑛, d(𝑥, 𝑦) = √(𝑥1 − 𝑦1)2 + . . . +(𝑥𝑛 − 𝑦𝑛)2). 

Definition: Let d and d’ be two metrics on a set M. The metrics 

d and d’ are called equivalent if there exist positive constants α 

and β such that αd’(𝑥, 𝑦) ≤ d(𝑥, 𝑦) ≤ βd’(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑀. 

(This concept will prove useful shortly.) 

On the other hand, not every metric space is a Euclidean 

space. For example, consider the set of real numbers ℝ and let 

d be the Euclidean metric on ℝ, that is, d(𝑥, 𝑦) = |𝑥 − 𝑦| for all 

𝑥 and 𝑦 in ℝ. Let d’: 𝑅 × 𝑅 → ℝ be a function such that 

d’(𝑥, 𝑦)= {
0, 𝑥 = 𝑦
1, 𝑥 ≠ 𝑦

 for all 𝑥, 𝑦 ∈ 𝑅, where R is the set of real 

numbers. (We reserve the symbol ℝ for the set of real numbers 

when this set is paired, either explicitly or implicitly, with the 

metric d.) It is clear that the first three properties of a metric 

listed above hold. To check the fourth property, there are three 

cases to be considered. First, assume that 𝑥 = 𝑦 = 𝑧 ∈ 𝑅. Then 

d’(𝑥, 𝑧) = d’(𝑥, 𝑦) = d’(𝑦, 𝑧) = 0, and we see that d’(𝑥, 𝑧) ≤ 

d’(𝑥, 𝑦) + d’(𝑦, 𝑧). Next, we assume that exactly two of these 

elements are equal, say (without loss of generality), 𝑥 = 𝑦 ≠
𝑧. In this case, d’(𝑥, 𝑦) = 0 while d’(𝑥, 𝑧) = d’(𝑦, 𝑧) = 1 and so 

1 = d’(𝑥, 𝑧) ≤ d’(𝑥, 𝑦) + d’(𝑦, 𝑧) = 1. Finally, let 𝑥, 𝑦, and 𝑧 be 

distinct. Then d’(𝑥, 𝑧) = 1 while d’(𝑥, 𝑦) + d’(𝑦, 𝑧) = 1 + 1 = 2, 

and so d’(𝑥, 𝑧) ≤ d’(𝑥, 𝑦) + d’(𝑦, 𝑧). It follows that the fourth 

listed property of a metric holds and (𝑅, d’) is a metric space. 

Next we show that the metrics d and d’ are not equivalent. On 

one hand, d’(𝑥, 𝑦) ≤ 1 for every 𝑥 and 𝑦 in 𝑅; on the other hand, 

d(𝑥, 𝑥 + 𝑛) = 𝑛 for any real number 𝑥 and any positive integer 

𝑛. Thus d is not bounded. It then follows that d’ and d are not 

equivalent and so (R, d’) is not a Euclidean space. The fact that 

all Euclidean spaces are metric spaces while not all metric 

spaces are Euclidean spaces leads us to ask which theorems that 

hold in Euclidean spaces also hold in general metric spaces. 

 

Convergence of Sequences 

The first concept we explore is convergence of sequences 

in general metric spaces. 

Definition: Suppose (E, d) is a metric space. Let 𝑝1, 𝑝2, 𝑝3, 𝑝4, 
… be a sequence of points in E. We call a point p in E a limit 

of this sequence if, given ε > 0, ∃N ∈ ℕ such that 𝑛 ≥ N ⇒ d(p, 

𝑝𝑛) < ε. If this is the case, the sequence is called convergent 

and is said to converge to p. (Otherwise the sequence is called 

divergent.) 

Theorem: In the one-dimensional Euclidean space ℝ, every 

sequence has at most one limit. 

Proof. Let {𝑎𝑛} be a sequence whose terms are in ℝ. If {𝑎𝑛} 

is divergent, then the sequence has no limits by definition and 

so the result follows immediately. Assume, on the other hand, 

that {𝑎𝑛} is convergent. Suppose, contrary to the result, that 

the sequence has distinct limits A and B in ℝ. Then for every ε 

> 0, ∃N1, N2 ∈ ℕ such that 𝑛 ≥ N1 ⇒ |𝑎𝑛 – A| < ε and 𝑛 ≥ N2 ⇒ 

|𝑎𝑛 – B| < ε. Moreover, |A – B| > 0 because A ≠ B. Let 𝑛 ≥ 

max{N1, N2}. By the triangle inequality, we may then observe 

that |A – B| ≤ |A – 𝑎𝑛| + |𝑎𝑛 – B| < ε + ε = 2ε, i.e., |A – B| < 2ε. 

Since this is true for every ε > 0, choose ε = 
1

2
|A – B| > 0. Then 

|A – B| < 2(
1

2
|A – B|) = |A – B|, which is a contradiction. Hence 

our assumption that A and B are distinct must be false, so we 

conclude that {𝑎𝑛} converges to a unique limit. □ 

We now prove that this result is true not only in Euclidean 

spaces, but in all metric spaces. The key in idea used in the 

proof is that for any two distinct points 𝑝1 and 𝑝2 in a metric 

space (E, d), there exists ε > 0 such that B(𝑝1, ε)⋂B(𝑝2, ε) = ∅, 

where B(𝑝, ε) = {𝑥 ∈ ℝ | d(𝑝, 𝑥) < ε} is the ε-ball centered at 𝑝 

in (E, d). 

Result 1: A sequence of points in a metric space has at most 

one limit in the metric space. 

Proof. Suppose (E, d) is a metric space. Let 𝑝1, 𝑝2, 𝑝3, 𝑝4, … be 

a sequence of points in E with metric d: 𝐸 × 𝐸 → ℝ. If the 

sequence is divergent, then it has no limits and so the result 

immediately follows. Assume, then, that the sequence is 

convergent. Suppose, contrary to the result, that the sequence 

has distinct limits p and q in E. Note that, because p and q are 

distinct, d(p, q) > 0. Then for every ε > 0, ∃N1, N2 ∈ ℕ such 

that 𝑛 ≥ N1 ⇒ d(p, 𝑝𝑛) < ε and 𝑛 ≥ N2 ⇒ d(q, 𝑝𝑛) < ε. Let 𝑛 ≥ 

max{N1, N2}. By the aforementioned fourth property of a 

metric, we see that d(p, q) ≤ d(p, 𝑝𝑛) + d(𝑝𝑛, q) < ε + ε = 2ε, 

i.e., d(p, q) < 2ε. Since this is true for every ε > 0, we choose ε 

= 
1

2
d(p, q) > 0. Then d(p, q) <  2[

1

2
d(p, q)] = d(p, q), which is a 

contradiction. Hence our assumption that p and q are distinct 
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must be false, so we conclude that the sequence 𝑝1, 𝑝2, 𝑝3, 𝑝4, 
… converges to a unique limit. □ 

Now that we have established that a sequence converges 

to at most one limit, this result may be incorporated (possibly 

in an implicit manner) into some of the results and proofs that 

follow. However, whether a given sequence is convergent is 

not the only curiosity we might have regarding said sequence: 

we might ask ourselves whether the sequence is Cauchy. 

Definition: A sequence of points 𝑝1, 𝑝2, 𝑝3, 𝑝4, … in a metric 

space (E, d) is Cauchy if ∀ε > 0, ∃N ∈ ℕ such that 𝑛, 𝑚 ≥ N ⇒ 

d(𝑝𝑛 , 𝑝𝑚) < ε. 

Theorem: In ℝ, every convergent sequence is a Cauchy 

sequence. 

Proof. Suppose the sequence {𝑎𝑛}, whose terms are in ℝ, is 

convergent and that its (unique!) limit is A, which is also in ℝ. 

This means that ∀ε > 0, ∃N ∈ ℕ such that 𝑛 ≥ N ⇒ |𝑎𝑛 – A| < 
ε

2
. (This is a valid interpretation of the definition of 

convergence, since ε > 0 ⇒ 
ε

2
 > 0.) Let 𝑛, 𝑚 ≥ N. By the triangle 

inequality, |𝑎𝑛 – 𝑎𝑚| ≤ |𝑎𝑛 – A| + |A – 𝑎𝑚| < 
ε

2
 + 

ε

2
 = ε. This 

implies that |𝑎𝑛 – 𝑎𝑚| < ε, and so {𝑎𝑛} is Cauchy by definition. 

□ 

An analogous proof shows that this too is a result that can 

be extended from Euclidean spaces to general metric spaces. 

Once again, the fourth property of a metric in our definition of 

a metric space proves to be valuable. 

Result 2: In a metric space, a convergent sequence is a Cauchy 

sequence. 

Proof. Let (E, d) be a metric space. Assume that the sequence 

of points 𝑝1, 𝑝2, 𝑝3, 𝑝4, … in E with metric d: 𝐸 × 𝐸 → ℝ is 

convergent, and suppose that its (again, unique!) limit is p ∈ E. 

Then ∀ε > 0, ∃N ∈ ℕ such that 𝑛 ≥ N ⇒ d(𝑝𝑛, p) < 
ε

2
. Let 𝑛, 𝑚 

≥ N. We deduce from the fourth listed property of a metric that 

d(𝑝𝑛 , 𝑝𝑚) ≤ d(𝑝𝑛, p) + d(p, 𝑝𝑚) < 
ε

2
 + 

ε

2
 = ε, i.e., d(𝑝𝑛, 𝑝𝑚) < ε. 

Hence, by definition, the sequence 𝑝1, 𝑝2, 𝑝3, 𝑝4, … is Cauchy. 

□ 

 

Continuity and Convergence 

In order to set the stage for our next result, we now 

introduce the concept of continuity of a function that maps one 

metric space onto another. 

Definition: Let (X, dX) and (Y, dY) be metric spaces, and let f: 

(X, dX) → (Y, dY) be a function. We say that f is continuous at a 

point p in X provided that ∀ε > 0, ∃𝛿 > 0 such that dX(p, x) < 𝛿 

⇒ dY(f(p), f(x)) < ε. The function f is said to be a continuous 

function if this is true for each point of X. 

Theorem: A function f: ℝ → ℝ is continuous if and only if for 

every convergent sequence 𝑥𝑛 → 𝑥 in ℝ, f(𝑥𝑛) → f(𝑥). 

Proof. (⇒) Let f: ℝ → ℝ be a continuous function. Given 𝑥𝑛 →
𝑥, we wish to show that f(𝑥𝑛) → f(𝑥), i.e., for any ε > 0, there 

exists some positive integer N such that |f(𝑥𝑛) – f(𝑥)| < ε for all 

𝑛 ≥ N. Let us fix ε > 0. Since f is a continuous function, it 

follows from the definition that there exists 𝛿 > 0 such that | 𝑥 

– 𝑥’| < 𝛿 ⇒ |f(𝑥) – f(𝑥’)| < ε (where 𝑥’, f(𝑥’) ∈ ℝ). Because 

𝑥𝑛 → 𝑥, it follows from the definition of convergence that there 

exists N ∈ ℕ such that |𝑥𝑛 – 𝑥| < 𝛿 for all 𝑛 ≥ N, which further 

implies that |f(𝑥𝑛) – f(𝑥)| < ε for all 𝑛 ≥ N. Thus f(𝑥𝑛) → f(𝑥). 

(⇐) Conversely, assume that for every sequence 𝑎𝑛 → 𝑎 in ℝ, 

f(𝑎𝑛) → f(𝑎). Our goal is to show that f is continuous. Suppose, 

to the contrary, that f is not continuous at 𝑥’ in ℝ. Then ∃ε > 0 

such that ∀𝑛 ∈ ℕ, ∃𝑥𝑛 ∈ ℝ such that |𝑥𝑛 – 𝑥’| < 
1

𝑛
 and |f(𝑥𝑛) – 

f(𝑥)| ≥ ε. This is a contradiction to our assumption because it 

means 𝑥𝑛 → 𝑥 while f(𝑥𝑛) does not converge to f(𝑥). Hence f 

must be continuous at 𝑥’ in ℝ, and so f is a continuous function. 

□ 

This is yet another result that is true in both Euclidean 

spaces and general metric spaces. We provide a proof of the 

result in general metric spaces by imitating our proof in the 

one-dimensional Euclidean space ℝ. 

Result 3: Let (X, dX) and (Y, dY) be metric spaces, and let f: (X, 

dX) → (Y, dY) be a function. Then f is continuous if and only if 

for every convergent sequence 𝑥𝑛 → 𝑥 in X, f(𝑥𝑛) → f(𝑥) in Y. 

Proof. (⇒) Let f: (X, dX) → (Y, dY) be a continuous function. 

Given 𝑥𝑛 → 𝑥 in X, we wish to show that f(𝑥𝑛) → f(𝑥) in Y, i.e., 

for any ε > 0, there exists some positive integer N such that 

dY(f(𝑥𝑛), f(𝑥)) < ε for all 𝑛 ≥ N. Let us fix ε > 0. Since f is a 

continuous function, it follows from the definition there exists 

𝛿 > 0 such that dX(𝑥, 𝑥’) < 𝛿 ⇒ dY(f(𝑥), f(𝑥’)) < ε (where 𝑥’ ∈ 

X, f(𝑥’) ∈ Y). Because 𝑥𝑛 → 𝑥, it follows from the definition of 

convergence that there exists a positive integer N such that 

dX(𝑥𝑛, 𝑥) < 𝛿 for all 𝑛 ≥ N. This further implies that dY(f(𝑥𝑛), 

f(𝑥)) < ε for all 𝑛 ≥ N. Thus f(𝑥𝑛) → f(𝑥) in Y. 

(⇐) Conversely, assume that for every sequence 𝑎𝑛 → 𝑎 in X, 

f(𝑥𝑛) → f(𝑥) in Y. Our goal is to show that f is continuous. 

Suppose, to the contrary, that f is not continuous at 𝑥’ in X. 

Then ∃ε > 0 such that ∀𝑛 ∈ ℕ, ∃𝑥𝑛 ∈ X such that dX(𝑥𝑛, 𝑥’) < 
1

𝑛
 and dY(f(𝑥𝑛), f(𝑥)) ≥ ε. This is a contradiction to our 

assumption because it means 𝑥𝑛 → 𝑥 in X while f(𝑥𝑛) does not 

converge to f(𝑥) in Y. Hence f must be continuous at 𝑥’ in X, 

and so f is a continuous function. □ 

 

Completeness 

Earlier we proved that in all metric spaces, every 

convergent sequence is Cauchy. In the one-dimensional 

Euclidean space ℝ, the converse is also true. 

Theorem: In ℝ, every Cauchy sequence is convergent. 

(Note: Our proof relies on the facts that every Cauchy sequence 

is bounded and that, according to the Bolzano-Weierstrass 

Theorem, every bounded sequence {𝑎𝑛} has a convergent 

subsequence {𝑎𝑛𝑘
}. We do not prove these theorems because 

we wish to keep our focus on Euclidean and metric spaces, but 

they are helpful nonetheless.) 

Proof. Suppose {𝑎𝑛}, a sequence whose terms are in ℝ, is 

Cauchy. Then {𝑎𝑛} is bounded and, by the Bolzano-

Weierstrass Theorem, has a subsequence {𝑎𝑛𝑘
} that converges 

to A for some (unique!) real number A. Thus ∀ε > 0, ∃N1 ∈ ℕ 

such that 𝑘 ≥ N1 ⇒ |𝑎𝑛𝑘
 – A| < 

ε

2
. Moreover, that {𝑎𝑛} is Cauchy 

means that ∀ε > 0, ∃N2 ∈ ℕ such that 𝑛, 𝑚 ≥ N2 ⇒ |𝑎𝑛 – 𝑎𝑚| < 
ε

2
. Choose N = max{N1, N2}. Since 𝑛𝑁 > N, we have that 𝑛 ≥ 

N ⇒ |𝑎𝑛 – A| = |(𝑎𝑛 – 𝑎𝑛𝑁
) + (𝑎𝑛𝑁

 – A)| ≤ |(𝑎𝑛 – 𝑎𝑛𝑁
)| + |(𝑎𝑛𝑁

 

– A)| < 
ε

2
 + 

ε

2
 = ε, i.e., |𝑎𝑛 – A| < ε. Thus, by definition, 𝑎𝑛 

converges to A in ℝ. □ 

This shows that in ℝ, a sequence is convergent if and only 

if it is Cauchy, i.e., “convergent” and “Cauchy” are equivalent 

descriptions of a sequence in ℝ. 

Definition: If every Cauchy sequence of points of a metric 

space is convergent to a point in the metric space, then the 

metric space is called complete. 
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We just showed that ℝ is complete, but not all metric 

spaces share that title. Before proving this, let us first establish 

a lemma. 

Lemma: If (M, d) is a metric space, E ⊂ M, and d’: 𝐸 × 𝐸 →
ℝ is the restriction of d on 𝐸 × 𝐸, then (E, d’) is a metric space. 

Proof. Let (M, d) be a metric space, and assume that E ⊂ M. 

Then for every 𝑥, 𝑦, 𝑧 ∈ 𝐸⊂ M, since d is a metric on M and d’ 

is the restriction of d on 𝐸 × 𝐸, it follows that 

(1) d(𝑥, 𝑦) = d’(𝑥, 𝑦) ≥ 0; 

(2) d’(𝑥, 𝑦) = d(𝑥, 𝑦) =  d(𝑦, 𝑥) = d’(𝑦, 𝑥); 

(3) d(𝑥, 𝑦) = d’(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦; 

(4) d’(𝑥, 𝑧) = d(𝑥, 𝑧) ≤ d(𝑥, 𝑦) + d(𝑦, 𝑧) = d’(𝑥, 𝑦) + d’(𝑦, 𝑧). 

Hence it follows immediately from the definition that (E, d’) is 

a metric space. □ 

Result 4: In general metric spaces, not every Cauchy sequence 

is necessarily a convergent sequence. 

Proof. Consider the sequence {𝑎𝑛} = {
1

𝑛
: ∈ ℕ} in the one-

dimensional Euclidean space ℝ. We first show that 𝑎𝑛 → 0 in 

ℝ. Let ε > 0. Then |𝑎𝑛 – 0| < ε ⇔ |𝑎𝑛| < ε ⇔ |
1

𝑛
| < ε ⇔ 

1

𝑛
 < ε ⇔ 

𝑛 > 
1

ε
. Choose N = [

1

ε
] + 1 ∈ ℕ. Then ∀ε > 0, ∃N = [

1

ε
] + 1 ∈ 

ℕ such that 𝑛 ≥ N ⇒ |𝑎𝑛 – 0| < ε. Hence, by definition, 𝑎𝑛 → 0 

in ℝ. Since {𝑎𝑛} is convergent in ℝ, it follows from Result 2 

that {𝑎𝑛} is Cauchy in ℝ. This means that ∀ε > 0, ∃N’ ∈ ℕ 

such that 𝑛, 𝑚 ≥ N’ ⇒ |𝑎𝑛 – 𝑎𝑚| < ε. Suppose, now, that the 

sequence is not in ℝ but rather in ℝ – {0} (with the Euclidean 

metric still applied). By the lemma preceding this result, the set 

ℝ – {0} paired with the one-dimensional Euclidean metric is 

indeed a metric space. Observe that the sequence is Cauchy in 

ℝ – {0} by definition (after all, 0 is not even a term of the 

sequence and so its removal from the original set does not alter 

this conclusion), but its (unique!) limit 0 is clearly not in ℝ – 

{0}. Therefore, {𝑎𝑛} is Cauchy but not convergent in ℝ – {0}. 

□ 

 

The Intermediate Value Theorem 

Thus far, much of the material we have discussed has been 

accessible primarily to a mathematically mature audience. 

However, we will now explore a theorem that should look 

familiar to any diligent student of introductory calculus: the 

Intermediate Value Theorem. 

Theorem (Intermediate Value Theorem): If f: ℝ → ℝ is a 

function that is continuous on the interval [𝑎, 𝑏] in ℝ and 𝑟 is a 

real number strictly between f(𝑎) and f(𝑏), then there is some 

real number 𝑐 in the interval (𝑎, 𝑏) such that f(𝑐) = 𝑟. 

(Note: We wish to avoid being too pedantic, so let us take for 

granted this fact: if f is continuous on some interval J of real 

numbers and 𝑥 and 𝑦 are in J with 𝑥 < 𝑦, then f(𝑥)f(𝑦) < 0 ⇒ 

∃𝑐 ∈ (𝑎, 𝑏) such that f(𝑐) = 0. To state this intuitively, a 

function f: ℝ → ℝ that is continuous on an interval whose 

endpoints lie on opposite sides of the x-axis must cross the x-

axis at some point in the interval. With this in mind, we prove 

the Intermediate Value Theorem for functions mapping the 

one-dimensional Euclidean space ℝ onto itself.) 

Proof. Let f: ℝ → ℝ be a function that is continuous on the 

interval [𝑎, 𝑏] in ℝ. Assume that 𝑟 is a real number strictly 

between f(𝑎) and f(𝑏), and note that k(𝑥) = f(𝑥) – 𝑟 is continuous 

on [𝑎, 𝑏]. Since k(𝑎)k(𝑏) = (f(𝑎) – 𝑟)(f(𝑏) – 𝑟) < 0, we know by 

the above fact that ∃𝑐 ∈ (𝑎, 𝑏) such that k(𝑐) = f(𝑐) – 𝑟 = 0, i.e., 

f(𝑐) = 𝑟. □ 

While the Intermediate Value Theorem may seem 

instinctive when working in Euclidean spaces, it does not hold 

in all metric spaces. We prove this by considering the domain 

of a function to be the union of two disjoint intervals of real 

numbers. 

Result 5: The Intermediate Value Theorem does not hold in 

general metric spaces. 

Proof. Let (X, d) be a metric space, and assume that d is the 

one-dimensional Euclidean metric (i.e., for every 𝑥 and 𝑦 in X, 

d(𝑥, 𝑦) = |𝑥 – 𝑦|). Suppose X = (−∞, −1)⋃(1, ∞) ⊂ ℝ. Let f: 

(X, d) → ℝ be a function such that f(𝑥)= {
−1, 𝑥 ∈ (−∞, −1]

1, 𝑥 ∈ [1, ∞)
, 

and observe that f is a continuous function because it is 

continuous at each point in its domain. Clearly f(-2) = -1 and 

f(2) = 1, but there is no 𝑐 in the domain of f such that f(𝑐) = 0 

even though -1 < 0 < 1. Hence the Intermediate Value Theorem 

does not hold in this metric space. □ 

 

Compactness 

The final major idea we explore is compactness of metric 

spaces, and we begin with terminology that will help us 

describe this concept. 

Definition: Let (X, d) be a metric space. A cover of X is a 

collection of sets whose union is exactly the set X. If there is a 

collection of open sets whose union is X, we call this collection 

an open cover. We say that the metric space is compact if every 

cover of X has a finite subcover. 

Theorem: In each 𝑛-dimensional Euclidean space ℝ𝑛, every 

closed bounded subset is compact. We treat this as a fact and 

omit the proof in order to stay within the scope of this work, 

but we will now show that this statement is not true in general 

metric spaces. 

Result 6: In general metric spaces, a closed bounded subset is 

not necessarily compact. 

Proof. Consider the metric space (R, d), where R denotes the 

set of real numbers and d: 𝑅 × 𝑅 → ℝ is a function such that 

d(𝑥, 𝑦)= {
0, 𝑥 = 𝑦
1, 𝑥 ≠ 𝑦

 for all 𝑥, 𝑦 ∈ 𝑅. (We showed in the 

introduction that this is indeed a valid metric.) In the metric 

space (R, d), for any subset M, M is bounded in (R, d). 

Moreover, R is a closed subset of itself. It follows that R is a 

closed bounded subset of (R, d). Consider the open cover of R, 

{B(𝑥, 
1

2
) | 𝑥 ∈ 𝑅}, where B(𝑥, 

1

2
) = {𝑦 ∈ 𝑅 | d(𝑥, 𝑦) < 

1

2
}. By the 

definition of the metric d, B(𝑥, 
1

2
) = {𝑥}. It is clear that the open 

cover {{𝑥} | 𝑥 ∈ 𝑅} has no finite subcover, and so, in the metric 

space (R, d), the closed bounded subset R is not compact. □ 

 

Conclusion 

Throughout this paper, we studied Euclidean spaces and 

metric spaces through the lenses of convergence, 

completeness, continuity, and compactness. As one may have 

anticipated, we discovered that a number of the results we 

examined could be extended from Euclidean spaces to general 

metric spaces while others could not. The ability to define a 

metric as any “distance” function over a set satisfying just the 

four properties listed in the definition of a metric space leads to 

a sharp decrease is one’s ability to rely on intuition when 

working in general metric spaces as opposed to the Euclidean 

spaces we all know and love. Our work largely serves as 

motivation to both appreciate concrete mathematical structures 
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and consider how the properties of these structures change 

when we abstract them. 
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