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1 Introduction

This article is motivated by the study of graphene, an experimentally fabricated monolayer
of carbon atoms arranged in a two-dimensional honeycomb lattice. Graphene has been
a subject of deep interest and exploration by scholars in theoretical and applied science,
mathematics, and engineering for over a decade, thanks to its unique properties [2]. In
particular, graphene has been described as the ideal two-dimensional electronic material,
as graphene is a monolayer and carrier dynamics (the flow of charge in semiconductors) is
necessarily confined in this strict two-dimensional layer. Moreover, the electron moving in
the honeycomb lattice is special because there are two equivalent lattice sites (A-sites and
B-sites) which give rise to the asymmetry in the graphene carrier dynamics [3]. Furthermore,
graphene offers prospects of critical advances in device performance at the atomic limit [1].

Here we formally construct the regular honeycomb structure H in terms of an equilateral
triangular lattice Λh, and determine the dual lattice Λ∗h and the Brillouin zone Bh (which is
itself a regular hexagon). In the direct space, we will tile R2 by parallelograms which each
contain two lattice points of the hexagonal lattice, so that each parallelogram contains two
atomic sites: one A-type and one B-type. The parallelograms serve as our fundamental cells.
These constructions allow us to study Wallace’s tight-binding model [4] and its mathematical
implications.

We then introduce the square-summable, complex-valued amplitude functions of the ground
states centered at the A- and B-sites of any given fundamental cell, and couple the amplitude
of the ground state centered at the A-site with that centered at the B-site to form the
amplitude on the cell. This allows us to develop and study the tight-binding Hamiltonian
HTB for the amplitude of a fundamental cell, noting that each A-type atom has three nearest
neighbors which are all B-type atoms and vice-versa.
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Upon computing the discrete Fourier transform ĤTB of the tight-binding Hamiltonian HTB,
which varies over the Brillouin zone Bh, we show that ĤTB has two eigenvalue expressions
and explore the two corresponding dispersion surfaces. We then show that these dispersion
surfaces touch conically at the six vertices of the Brillouin zone Bh.

Next, we examine the effects of a perturbation on the dispersion relation by adding a sym-
metric potential to ĤTB. After computing the new eigenvalue expressions, we find that there
is now an energy gap and the dispersion surfaces no longer touch.

Finally, the density of states measure is introduced and used to prove a physically relevant
result.

2 Construction and Setup

First we construct the (regular) honeycomb structure H. Given the vectors

v1 = (

√
3

2
,

1

2
), v2 = (

√
3

2
, −1

2
),

the equilateral triangular lattice is given by

Λh := Zv1 ⊕ Zv2.

Then, given

vA = (0, 0), vB = (
1√
3
, 0),

define two interpenetrating triangular lattices

ΛA := vA + Λh, ΛB := vB + Λh.

We then define

H := ΛA ∪ ΛB.
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Figure 1 (See [2].)

Given
Λh := Zv1 ⊕ Zv2,

the dual lattice of Λh, Λ∗h, is defined by

Λ∗h := Zk1 ⊕ Zk2,

where the dual basis vectors k1 and k2 are uniquely determined by the relation

ki · vj = 2πδij.

Recalling that

v1 = (

√
3

2
,

1

2
), v2 = (

√
3

2
, −1

2
),

we deduce from the required relation that

k1 = (
2π√

3
, 2π), k2 = (

2π√
3
, −2π).

Now, we define the Brillouin zone to be the smallest volume completely enclosed by planes
which are the perpendicular bisectors of the dual lattice vectors drawn from the origin. (This
is exactly the Wigner-Seitz cell in the dual lattice Λ∗h.) Here, the Brillouin zone Bh is the
hexagon in R2

k with vertices

(0,
4π

3
), (0, −4π

3
), (

2π√
3
, −2π

3
), (− 2π√

3
,

2π

3
), (− 2π√

3
, −2π

3
), (

2π√
3
,

2π

3
).
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Figure 2 (See [2].)

Finally, in the direct space, we tile R2 by parallelograms that each contain two lattice points
of the hexagonal lattice, so that each parallelogram contains two atomic sites: one A-type
and one B-type. We label (n, m) the parallelogram containing

v
(n, m)
A := vA + nv1 +mv2, v

(n, m)
B := vB + nv1 +mv2.

These parallelograms are the fundamental period cells, as information does not change from
one such parallelogram to another.

Figure 3 (See [2].)
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3 Amplitudes

We have established that in each fundamental period cell, there is one A-type atomic site
and one B-type atomic site. Let

ψ
(n, m)
A : Z2 → C, ψ(n, m)

B : Z2 → C

denote the amplitudes of the ground states centered at the A- and B-sites, respectively, of
the cell with label (n, m), where

ψ
(n, m)
A , ψ

(n, m)
B ∈ `2(Z2)

and `2(Z2) is the Hilbert space consisting of square-summable functions varying over Z2, and
equipped with the norm

‖ψ‖2`2(Z2) :=
∑

(n, m)∈Z2

|ψ(n, m)|2.

We bring together ψ
(n, m)
A and ψ

(n, m)
B to form the amplitude[

ψ
(n, m)
A

ψ
(n, m)
B

]
: Z2 → C2

on the fundamental cell with label (n, m), where[
ψ

(n, m)
A

ψ
(n, m)
B

]
(n, m)∈Z2

∈ `2(Z2)× `2(Z2).

4 The Tight-Binding Model

Hereafter, given a lattice point P , we say a lattice point Q 6= P is a nearest neighbor of P if
P and Q are no farther apart than P and any other lattice point.

Observe that, in Figure 1, each A-type atom has three nearest neighbors which are all B-
type atoms, while each B-type atom has three nearest neighbors which are all A-type atoms.
(This is true in any fundamental cell.) By definition, we attain the tight-binding Hamiltonian
for

ψ :=

[
ψ

(n, m)
A

ψ
(n, m)
B

]
∈ `2(Z2)× `2(Z2)

by adding (componentwise) the values of ψ at each of the nearest neighbors of the respective
components. The tight-binding Hamiltonian for ψ (with no added potential) is then given
by

HTB : `2(Z2)× `2(Z2)→ `2(Z2)× `2(Z2),
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HTB(ψ)(n, m) =

[
ψ

(n, m)
B + ψ

(n, m−1)
B + ψ

(n−1, m)
B

ψ
(n, m)
A + ψ

(n+1, m)
A + ψ

(n, m+1)
A

]
.

Next, we define the discrete Fourier transform ·̂. We have, for a scalar-valued function
ψ ∈ `2(Z2),

·̂ : `2(Z2)→ L2(Bh) : ψ̂(k) :=
1√
|Bh|

∑
n, m

e−ik·(nv1+mv2)ψ(n, m).

For ψ :=

[
ψA
ψB

]
∈ `2(Z2)× `2(Z2), this extends to

·̂ : `2(Z2)× `2(Z2)→ L2(Bh)× L2(Bh),

[
ψ̂A
ψ̂B

]
(k) :=

1√
|Bh|

∑
n, m

e−ik·(nv1+mv2)

[
ψ

(n, m)
A

ψ
(n, m)
B

]
.

We wish to compute the discrete Fourier transform of HTB(ψ), which is given by

ĤTBψ(k) :=
1√
|Bh|

∑
n, m

e−ik·(nv1+mv2)

[
ψ

(n, m)
B + ψ

(n, m−1)
B + ψ

(n−1, m)
B

ψ
(n, m)
A + ψ

(n+1, m)
A + ψ

(n, m+1)
A

]
,

where k varies over the Brillouin zone Bh. For the first row, we compute

1√
|Bh|

∑
n, m

e−ik·(nv1+mv2)(ψ
(n, m)
B + ψ

(n, m−1)
B + ψ

(n−1, m)
B )

= ψ̂B(k) + e−ik·v1ψ̂B(k) + e−ik·v2ψ̂B(k)

= (1 + e−ik·v1 + e−ik·v2)ψ̂B(k).

Similarly, for the second row,

1√
|Bh|

∑
n, m

e−ik·(nv1+mv2)(ψ
(n, m)
A + ψ

(n, m+1)
A + ψ

(n+1, m)
A )

= (1 + eik·v1 + eik·v2)ψ̂A(k).

Therefore we may write

ĤTBψ(k) =

[
0 1 + e−ik·v1 + e−ik·v2

1 + eik·v1 + eik·v2 0

][
ψ̂A(k)

ψ̂B(k)

]
=: ĤTB(k)ψ̂(k).
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(Note, for completeness, that |Bh| = 8
√

3π2. To see this, note that Bh is a regular hexagon
which is composed of six equilateral triangles of side length 4π√

3
. By the Pythagorean theorem,

the height of each triangle is given by
√

( 4π√
3
)2 − ( 2π√

3
)2 = 2π. Hence the area of each triangle

is given by 1
2
4π√
3
2π = 4π2

√
3

= 4π2
√
3

3
, and multiplying this by six, as there are six triangles,

shows that |Bh| = 8
√

3π2.)

Now, let
σ(k) := 1 + eik·v1 + eik·v2 ,

so that we may write

ĤTB(k) =

[
0 σ(k)

σ(k) 0

]
.

Notice that

det(ĤTB(k)− λ(k)I2) = det

[
−λ(k) σ(k)
σ(k) −λ(k)

]
= λ(k)2 − |σ(k)|2.

Then, setting this equal to zero and solving for λ(k), we see that for each k ∈ Bh, ĤTB(k)
has two eigenvalues, namely

λ+(k) := |σ(k)|, λ−(k) := −|σ(k)|.
Hence the spectrum lies in the interval [-3, 3], and the system has two dispersion surfaces,
namely

(k, λ+(k)), (k, λ−(k)),

which give rise to two spectral bands: one corresponding to the graph of λ+(k), and the
other corresponding to that of λ−(k). The dispersion relation for the two spectral bands of
the tight-binding model is given by

E±(k) = ±|t|WTB(k), k ∈ Bh,
where

WTB(k) := |σ(k)| = |1 + eik·v1 + eik·v2|.

Figure 4 (See [2].)
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The two dispersion surfaces touch conically (WTB(k) = 0) at the six vertices of Bh. In fact,
it is straightforward to check that WTB(k) = 0 at each of the six vertices, which are listed
above, by using Euler’s formula. To see that the surfaces touch conically, we let k∗ = (k∗1, k

∗
2)

be any vertex of Bh and use a Taylor expansion for σ about k∗. Note that σ is a function
of two variables, as seen by writing σ(k) = σ(k1, k2), and let Hess[σ](k) denote its Hessian
matrix at k. Using σ(k∗) = 1 + eik

∗·v1 + eik
∗·v2 = 0, we have

σ(k) = σ(k∗) +∇σ(k∗) · (k− k∗) +
1

2
(k− k∗)Hess[σ](k∗)(k− k∗)> +R3(k− k∗)

= (i

√
3

2
(eik

∗·v1+eik
∗·v2), i

1

2
(eik

∗·v1−eik∗·v2))·(k−k∗)+1

2
(k−k∗)Hess[σ](k∗)(k−k∗)>+R3(k−k∗)

= (−i
√

3

2
, i

1

2
(eik

∗·v1 − eik∗·v2)) · (k− k∗) +
1

2
(k− k∗)Hess[σ](k∗)(k− k∗)> +R3(k− k∗),

where

Hess[σ](k) =

[
−3

4
(eik·v1 + eik·v2) −

√
3
4

(eik·v1 − eik·v2)

−
√
3
4

(eik·v1 − eik·v2) −1
4
(eik·v1 + eik·v2)

]
and, writing k = (k1, k2) and k∗ = (k∗1, k

∗
2), the remainder term R3(k− k∗) is given by

R3(k− k∗) =
1

3!
[σk1k1k1(ξ, η)(k1 − k∗1)3 + 3σk1k1k2(ξ, η)(k1 − k∗1)2(k2 − k∗2)

+3σk1k2k2(ξ, η)(k1 − k∗1)(k2 − k∗2)2 + σk2k2k2(ξ, η)(k2 − k∗2)3]

for some ξ ∈ [min{k1, k∗1}, max{k1, k∗1}] and η ∈ [min{k2, k∗2}, max{k2, k∗2}].
(Here, for example, σk1k1k1 denotes the third partial derivative of σ with respect to k1.)
Note that for any k = (k1, k2) ∈ Bh and any vertex k∗ = (k∗1, k

∗
2) of Bh, by the triangle

inequality and the fact that |eiθ| = 1 for any θ ∈ R, we have

|R3(k−k∗)| ≤
√

3

8
|k1−k∗1|3+

3

8
|k1−k∗1|2|k2−k∗2|+

√
3

8
|k1−k∗1‖k2−k∗2|2+

1

24
|k2−k∗2|3 ≤

3
√

3 + 5

12
‖k−k∗‖3.

Thus, letting k→ k∗, we see that indeed the dispersion surfaces touch conically, as ∇σ(k∗),
the coefficient of k− k∗ above, does not vanish; hence the Taylor expansion of σ(k) at k∗ is
of order ‖k− k∗‖. The six vertices of the Brillouin zone Bh are called the Dirac points.

Note that, by direct computation, letting k∗ be any vertex of Bh,

|∇σ(k∗) · (k− k∗)|2 =
3

4
‖k− k∗‖2,

i.e.,

|∇σ(k∗) · (k− k∗)| =
√

3

2
‖k− k∗‖,

for any k ∈ Bh. In particular, this implies that, whenever k 6= k∗, ∇σ(k∗) and k − k∗ are
not orthogonal vectors.
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5 Summary of the Tight-Binding Model Without Per-

turbations

Thus far, we have constructed the (regular) honeycomb structure H and described the dual
lattice and the Brillouin zone Bh, which is itself a regular hexagon. To form the fundamental
period cells, we tiled R2 (in the direct space) by parallelograms that each contain two lattice
points of the hexagonal lattice, so that each parallelogram would contain two atomic sites:
one A-type and one B-type. We then introduced the amplitudes

ψ
(n, m)
A : Z2 → C, ψ(n, m)

B : Z2 → C

of the ground states centered at the A- and B-sites, respectively, of the cell labeled (n, m),
and brought them together to form the amplitude[

ψ
(n, m)
A

ψ
(n, m)
B

]
: Z2 → C2

on the fundamental cell with label (n, m), where[
ψ

(n, m)
A

ψ
(n, m)
B

]
(n, m)∈Z2

∈ `2(Z2)× `2(Z2).

After noting that, in any given fundamental cell, each A-type atom has three nearest neigh-
bors which are all B-type atoms and vice-versa, we defined the tight-binding Hamiltonian

for ψ :=

[
ψ

(n, m)
A

ψ
(n, m)
B

]
by

HTB : `2(Z2)× `2(Z2)→ `2(Z2)× `2(Z2),

HTB(ψ)(n, m) =

[
ψ

(n, m)
B + ψ

(n, m−1)
B + ψ

(n−1, m)
B

ψ
(n, m)
A + ψ

(n+1, m)
A + ψ

(n, m+1)
A

]
.

Lastly, we computed the discrete Fourier transform of the tight-binding Hamiltonian and
attained the matrix

ĤTB(k) =

[
0 1 + e−ik·v1 + e−ik·v2

1 + eik·v1 + eik·v2 0

]
=:

[
0 σ(k)

σ(k) 0

]
,

where
σ(k) := 1 + eik·v1 + eik·v2 ,

which, for any k ∈ Bh, has eigenvalues

λ+(k) := |σ(k)|, λ−(k) := −|σ(k)|.

We showed that the corresponding dispersion surfaces touch conically at each of the six
vertices of the Brillouin zone Bh, which are called the Dirac points.
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6 Perturbations

Heretofore we have studied the tight-binding model without adding a potential. We now
wish to study the effects of a perturbation on the two spectral bands discussed previously.
Given ρ ∈ R\{0}, define

Vρ :=

[
ρ 0
0 −ρ

]
,

which is the (symmetric) matrix we obtain from assigning the value ρ to the A-type atoms,
and -ρ to the B-type atoms. Then the matrix

ĤTB(k) + Vρ

has eigenvalues
λ±ρ(k) := ±

√
|σ(k)|2 + ρ2.

Notice that if k∗ is any of the six vertices of Bh, it follows from our work in the previous
section that

λ±ρ(k
∗) = ±

√
ρ2 = ±|ρ|.

Notably, the dispersion surfaces no longer touch at any of these vertices; rather, there is an
energy gap of 2|ρ|.

More generally, assign values ρA ∈ R\{0} to each A-type atom and ρB ∈ R\{0} to each
B-type atom, and consider the corresponding (symmetric) potential

VAB :=

[
ρA 0
0 ρB

]
.

Then the matrix
ĤTB(k) + VAB

has eigenvalues

λ±AB(k) :=
1

2
(ρA + ρB)± 1

2

√
(ρA − ρB)2 + 4|σ(k)|2.

Hence, if k∗ is any of the six vertices of Bh, it follows that

λ±AB(k∗) =
1

2
(ρA + ρB)± 1

2
|ρA − ρB|.

Observe that
ρA > ρB =⇒ λ+AB(k∗) = ρA, λ−AB(k∗) = ρB,

ρA < ρB =⇒ λ+AB(k∗) = ρB, λ−AB(k∗) = ρA,

ρA = ρB =⇒ λ+AB(k∗) = ρA = ρB = λ−AB(k∗).

Thus, if ρA = ρB, then the dispersion surfaces still touch at each vertex k∗ of the Brillouin
zone Bh. Otherwise, there is an energy gap of |ρA − ρB|.
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7 Density of States

We next define the density of states measure. Let Q̃ be a basic period cell in the dual lattice,
and let En(k) be the energy levels, listed in nondecreasing order, of a Schrödinger operator
H(k). The density of states measure N is the measure on R given by

N(E) =
2

|Q̃|

∑
n

|{k ∈ Q̃ : En(k) ≤ E}|,

where | · | denotes the Lebesgue measure.

The corresponding density of states function n is defined by

n(E) = N ′(E).

For our case, given E ∈ R, the integrated density of states function N is given by

N(E) =
2

|Bh|
[|{k ∈ Bh : λ−(k) ≤ E}|+ |{k ∈ Bh : λ+(k) ≤ E}|],

so that N(E) gives the number of eigenvalues of ĤTB(k), per unit volume, up to energy E.
By definition, N is monotone nondecreasing.

Then the corresponding density of states function n is given by

n(E) = N ′(E),

so that n(E) gives, roughly speaking, the number of allowed electron states per volume at a
given energy.

We claim that n(0) = 0, as in [4]. Physically, this means that there is no transport between
the two energy bands.
To see this, we omit the multiple 2

|Bh|
in the definition of N(E) for convenience and use

difference quotients, noting that λ+(k) ≥ 0 and λ−(k) ≤ 0 for all k ∈ Bh. Fix ε > 0.

First, we have

N(ε)−N(0)

ε
=

1

ε
[|{k ∈ Bh : λ+(k) ≤ ε}|+ |{k ∈ Bh : λ−(k) ≤ ε}|

−|{k ∈ Bh : λ+(k) ≤ 0}| − |{k ∈ Bh : λ−(k) ≤ 0}|]

=
1

ε
[|{k ∈ Bh : λ+(k) ≤ ε}|+ |Bh| − |{k ∈ Bh : λ+(k) ≤ 0}| − |Bh|]
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=
1

ε
|{k ∈ Bh : 0 ≤ λ+(k) ≤ ε}|.

We claim that
|{k ∈ Bh : 0 ≤ λ+(k) ≤ ε}| ∼ ε2.

Indeed, for k ∈ Bh, we use the Taylor expansion (neglecting higher order terms) and prior
remark to write

λ+(k) = |∇σ(k∗) · (k− k∗)| =
√

3

2
‖k− k∗‖.

Therefore

|{k ∈ Bh : 0 ≤ λ+(k) ≤ ε}| = |{k ∈ Bh : ‖k− k∗‖ ≤ 2
√

3

3
ε}|.

The set of k ∈ Bh satisfying

‖k− k∗‖ ≤ 2
√

3

3
ε

is the intersection of Bh and the closure of the disk, centered at k∗, of radius 2
√
3

3
ε. Therefore

|{k ∈ Bh : 0 ≤ λ+(k) ≤ ε}| = |{k ∈ Bh : ‖k− k∗‖ ≤ 2
√

3

3
ε}|

is bounded above by the area of the disk, which is

π(
2
√

3

3
ε)2 =

4

3
πε2;

it is bounded below by the area of a triangle of base 2ε and height
√
3
3
ε, i.e.,

1

2
(2ε)

√
3

3
ε =

√
3

3
ε2.

We have shown that
√

3

3
ε2 ≤ |{k ∈ Bh : 0 ≤ λ+(k) ≤ ε}| ≤ 4

3
πε2.

It follows that
|{k ∈ Bh : 0 ≤ λ+(k) ≤ ε}| ∼ ε2

as claimed, and thus
N(ε)−N(0)

ε
∼ 1

ε
ε2 = ε→ 0 as ε→ 0.

In a similar way, we attain

N(0)−N(−ε)
ε

=
1

ε
[|{k ∈ Bh : λ+(k) ≤ 0}|+ |{k ∈ Bh : λ−(k) ≤ 0}|
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−|{k ∈ Bh : λ+(k) ≤ −ε}| − |{k ∈ Bh : λ−(k) ≤ −ε}|]

=
1

ε
|{k ∈ Bh : −ε ≤ λ−(k) ≤ 0}| ∼ 1

ε
ε2 = ε→ 0 as ε→ 0.

We conclude that n(0) = 0 as desired.

8 Summary

We constructed the (regular) honeycomb structure H and described the dual lattice and
the Brillouin zone Bh, which is itself a regular hexagon. To form the fundamental cells, we
tiled R2 (in the direct space) by parallelograms that each contain two lattice points of the
hexagonal lattice, so that each parallelogram would contain an A-type atomic site and a
B-type atomic site.

We then introduced the amplitudes of the ground states centered at the A- and B-sites of
any given fundamental cell and noted that in any such cell, each A-type atom has three
nearest neighbors which are all B-type atoms and vice-versa. This allowed us to define the
tight-binding Hamiltonian. Upon doing so, we computed the discrete Fourier transform
of the tight-binding Hamiltonian, which, for any k ∈ Bh, has two eigenvalues; we showed
that the corresponding dispersion surfaces touch conically at each of the six vertices of the
Brillouin zone Bh, which are called the Dirac points. We showed that adding a perturbation
to the discrete Fourier transform of the tight-binding matrix leads to an energy gap, as the
two dispersion surfaces become separated.

Lastly, we introduced the integrated density of states and density of states and showed,
essentially, that there are zero allowed electron states per volume at energy zero.
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